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Abstract—Here we report the characterization of the 
photoelastic dispersion coefficient using digital holography with 
two distinct reconstruction methods: one based on the Fresnel 
method and the other utilizing convolutional neural networks 
(CNN). The CNN was trained with reconstruction from the 
Fresnel method and was able to provide reconstructions with an 
average Mean Squared Error of 0.006. 
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I. INTRODUCTION 

The photoelastic dispersion coefficient is used to describe 
the photoelastic material. Its characterization is essential for 
understanding the relationship between optics and mechanical 
properties [1]. Photoelasticity for the study of materials 
presents several advantages, such as the non-destructive 
nature of the technique and straightforward calculations that 
yield the material’s properties [1-2]. These properties, 
however, are mainly obtained indirectly and rely on many 
approximation conditions to yield accurate results [1,3]. The 
use of polarized digital holography for the study of 
photoelastic materials brings the advantage of a more 
sophisticated and precise technique that is capable of 
presenting properties, such as the phase difference and index 
of refraction in a direct way [3–5]. The downside of this 
approach stems from the requirement for a larger dataset and 
the use of a more complicated reconstruction algorithm. 

A prominent approach is to make use of convolutional 
neural networks (CNN) to, from a single input image, obtain 
the stress map from a photoelastic sample under tension [6], 
or even obtain the holographic phase retrieval from a single 
input hologram. The latter is especially useful for in-line 
holographic microscopy, but can also be used in off-axis 
configurations [7,8]. 

In this work, we present a convolutional neural network to 
perform the holographic reconstructions of a photoelastic 
sample. We then, calculate the dispersion coefficient of a test 
sample and compared it with the results obtained by the 
traditional Fresnel method for reconstruction. 

II. EXPERIMENTAL SET-UP 

The holographic setup was based on a Mach-Zender 
interferometer and employed a linear transmission polariscope 
in the object arm of the interferometer. As shown in Fig. 1, the 
light from a He-Ne laser (15 mW; 632 nm), after passing 

through a spatial filter (SF) consisting of a 10x objective lens, 
one 10 µm pinhole, is collimated by a plane-concave lens (L).  
The laser is then divided by a 50/50 beam splitter (BS1). In 
the reference path, a linear polarizer (P3) is used to set the 
polarization to be the same as at the end of the object path.  

To observe the fringe patterns, the photoelastic sample (S) 
is placed between two crossed polarizers (P1 & P2), in the 
object path. Both paths are then combined, at the second beam 
splitter (BS2), and are sent to a CCD camera, where the 
interference pattern is recorded. 

 
Fig. 1. Holographic set-up. SF: spatial filter; L: plane-concave lens; 
M1,2,3: Mirrors; P1,2,3: Polarizers; BS1,2: 50/50 beam splitters. 

III. HOLOGRAPHIC RECONSTRUCTION 

Loads ranging from 40g to 590g were applied to test 
samples, with a 50g increment, and, for each load of each 
sample, a reconstructed phase map was created. The sample 
was set in a position where the isoclinic fringes could be 
mainly avoided. The Fresnel method was used to obtain the 
target reconstructions for the training dataset of the neural 
network. Then the trained network was used to make 
reconstructions of new photoelastic samples. 

A. Fresnel Method 

The holographic reconstruction with the Fresnel method 
was accomplished by a discretization of the diffraction 
integral of Huygens-Fresnel with a one-order Taylor 
expansion [9,10].  
 For this, the hologram and the reference images are used 
as input. After an initial data treatment, the logarithm of the 
absolute value of the hologram transform is calculated. A 
manual selection of the region of interest in the Fourier space 
is made, and then a construction of the image plane matrix is 
obtained from a propagation matrix of the hologram plane. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), 
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Finally, calculations of the Chirp function, by a first-order 
approximation of the Taylor series, and the reconstruction 
matrices are made and the final images are saved [9,10].  

B. Neural Network - UNet 

The neural network architecture was that of a U-Net. As 
shown in Fig. 2, the structure starts with the input hologram, 
with dimensions of 256x320x1 pixels, passing through two 
convolutional layers (Conv), each one with 3x3 kernels and a 
ReLu activation function, then a Max Pooling layer (M/P). 
This structure has been applied a total of three times in the 
decoder part of the network, with 32 filters in the first block, 
64 in the second, and 128 in the third, for the convolutional 
layers. This structure is then followed by two additional 
convolutional layers, with 256 filters. 

 

 
Fig. 2. Unet neural network archtecture. 

The decoder blocks of the neural network consist of an Up 
Sampling layer (U/P), a convolutional layer, followed by a 
Concatenation layer (Merg), and two more convolutional 
layers. To return the output image to the same dimensions as 
the original hologram, this structure is also applied three times 
with a final convolutional layer, with only one filter. 
Additional dropout layers were included in the encoder part of 
the network to prevent overfitting to the training data. 

The neural network presented a total of 1,925,281 
trainable parameters and utilized an Adam optimizer, with a 
learning rate of 2E-4. For the network training, the hologram 
image is used as an input and the corresponding reconstruction 
is used as a target image. The difference between the output 
and the target was calculated via Mean Squared Error (MSE) 
and Mean Absolute Error (MAE) loss functions. While both 
functions presented an overall good performance, the MSE 
function presented slightly better results. The neural network 
was trained with a dataset that was divided into 80% for a 
training set a 20% for a validation set. The training was made 
with a batch size of 32 and 100 epochs. 

IV. RESULTS 

When compared with the reconstructed hologram in the 
Fresnel method, the neural network was not able to provide 
visually identical images as the target reconstruction. 
However, the network presented a low validation MSE value 
of ~0.006. In comparison, the MSE of ten reconstructed 
images from the Fresnel method, when the manually selected 
region of interest is slightly different, is ~0.009. This error was 
sufficient to provide the dispersion coefficient with the same 
order of magnitude as the one obtained from the 
reconstructions by the Fresnel method, as shown in Table 1. 

A data collection with a new sample, that was not used for 
the network training, was made. This sample generated a total 
of 12 holograms images, were each one was reconstructed by 

the trained neural network.  
The dispersion coefficient in holography (ℋ)  was 

calculated using equation (1) [5,9,10]:  
 

〈𝛥𝜎௘௫௧௘௥௡௔௟〉  =
𝜆

2𝜋𝑒ℋ
〈𝛥𝜙〉                         (1) 

 

where 〈𝛥𝜎௘௫௧௘௥௡௔௟〉 is the mean differences of stresses, 〈𝛥𝜙〉 
is the mean differences of phase maps, and e is the sample 
thickness. The differences in stresses are obtained via the 
known mass and the area over which the force is applied. The 
mean phases were obtained by the average of the pixel values 
of the reconstructed, demodulated, phase maps.  

Table 1 presents the calculated dispersion coefficient of 
the sample used in the neural network, as well as the 
coefficient of another sample, with similar mechanical 
properties, obtained by the Fresnel method [3]. 

 
TABLE I.  DISPERSION COEFFICIENTS BY THE TWO METHODS 

 Dispersion coefficient 
Fresnel Method 3.44  10−12 m2/N 
Neural Network 7.84  10−12 m2/N 

V. CONCLUSION 

The dispersion coefficient, obtained through the 
evaluation of mean stress differences and phase map 
differences, demonstrated comparable results between the 
neural network and the well-established Fresnel method. The 
neural network approach exhibited distinct advantages, 
including reduced computational power and the elimination of 
manual region selection for reconstruction. This shows the 
potential of the neural network approach as an efficient and 
automated alternative for holographic reconstruction. 
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