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Abstract. The successful development of energy-conversion machines based on either nuclear 

fission or fusion is completely dependent on the behaviour of the engineering materials used to 

construct the fuel containment and primary heat extraction systems. Such materials must be 

designed in order to maintain their structural integrity and dimensional stability in an 

environment involving high temperatures and heat fluxes, corrosive media, high stresses and 

intense neutron fluxes. However, despite the various others damage issues, such as the effects 

of plasma radiation and particle flux, the neutron flux is sufficiently energetic to displace atoms 

from their crystalline lattice sites. It is clear that the understanding of the neutron damage is 

essential for the development and safe operation of nuclear systems. Considering this context, 

the work presents a study of neutron damage in the Gas Cooled Fast Transmutation Reactor 

(GCFTR-2) driven by a Tokamak D-T fusion neutron source of 14.03 MeV. The theoretical 

analysis was performed by MCNP-5 and the ENDF/B-VII.1 neutron data library. A brief 

discussion about the determination of the radiation damage is presented, along with an analysis 

of the total neutron energy deposition in seven points through the material of the plasma source 

wall (PSW), in which was considered the HT-9 steel. The neutron flux was subdivided into 

three energy groups and their behaviour through the material was also examined. 

Keywords: Hybrid Reactors, Fusion Reactors, Neutron Damage, GCFTR-2, MCNP-5 
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1.  Introduction 

Hybrid subcritical reactors, as the Gas Cooled Fast Transmutation Reactor (GCFTR-2), or even 

Accelerator Driven Systems (ADS), are recently being widely studied since they would offer a range 

of important advantages over conventional fission reactors. The greater security due to the subcritical 

core is one of the strongest points in favor of hybrid reactors, along with the greater public acceptance 

of nuclear energy. Hybrid systems would also offer minor problems with respect to proliferation, 

significantly reduction of nuclear waste production and the possibility of transmutation of the existent 

nuclear waste. In this case, neutrons might be used to “transmute” long lived radioactive nuclei into 

much more short-lived ones [1,2,3,4,5,6].  
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In a fusion reactor, energy will be mainly produced by the fusion reaction between Deuterium (D) 

and Tritium (T) nuclei: D + T → 
4
He + n. It is important to notice that this kind of system has a large 

neutron excess in comparison to fission reactors. Since neutrons produced by fusion reactors do not 

contribute for fusion reactions, the neutron leakage is complete. On the other hand, in a fission reactor 

the neutrons maintain the chain reaction. Despite the fact that in a fission reaction more neutrons are 

produced than in a fusion reaction, their leakage from the system is always kept to a minimum. In 

view of the high number of neutrons produced by fusion reaction without being appropriately 

exploited, conceiving a system in which neutrons may be utilized for other purposes is then possible. 

The peak of the neutron emission occurs at ~14 MeV, energy in which 
239

Pu and 
238

U undergo fission, 

enabling the utilization of fusion neutron excess as neutron source in a subcritical fission system. 

Therefore, a hybrid fusion-fission reactor may be seen as a coupled system; a subcritical fission 

reactor which has as source of neutrons a fusion reactor core [7].  

1.1.  The Fast Neutron Damage Problem 

Damaging effects due to high-energy neutrons are considered crucial in fusion reactors, since a large 

number of neutrons are produced and escape from the system. In structural steels, as the one studied in 

this work, the main radiation damage mechanism is the displacement of atoms (DPA) from their lattice 

positions [8,9]. When radiation such as fast neutrons displaces atoms, vacancies are formed, which 

may be concentrated and create voids within the material, leading to void swelling phenomena. With 

the accumulation of damages, structural material may be deformed or even lose its integrity due to the 

high degradation of its properties. Unfortunately, currently there is no sufficient information which 

could be used to establish absolute damage limits for structure materials in fusion reactors. However, 

it is acknowledged that ferritic steels are less susceptible to displacement damage effects than 

austenitic steels, which led us to concentrate our study on the HT-9 steel, proved to be one of the most 

resistant and a strong candidate to be a structural material in fusion facilities [10,11]. 

This work presents a study of the displacement per atoms and the energy deposition in the first 

plasma source wall (PSW) composed by High-Cr martensitic HT-9 steel  due to the high fast neutron 

flux in the Gas Cooled Fast Transmutation Reactor (GCFT-2) facility [12,13,14]. Studies of this nature 

are essential to evaluate which materials may be employed in fusion facilities, the thickness of 

material needed and also the lifetime of the structures, contributing to the understanding of these 

technological challenges.  

2.  Computational Simulation 

2.1.  The MCNP-5 Gas Cooled Fast Transmutation Reactor (GCFTR-2) Simulation 

As the name suggests, the Gas Cooled Fast Transmutation Reactor (GCFTR-2), is a helium-cooled, 

fast and subcritical reactor which uses coated transuranic (TRU) fuel particles enclosed in SiC matrix 

pins. The GCFTR-2 was entirely reproduced using MCNP-5 simulations. The Figure 1 shows a side 

and an upper view scheme of the reactor. 
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Figure 1 – (a) The side view and (b) the upper view of the Gas Cooled Fast Transmutation Reactor 

(GCFTR-2) simulated in the MCNP-5. In the picture, the word “reactor” corresponds to the fission 

core. 

 

The PSW has a thickness of 3.5 cm and separates the fission core and plasma regions. All the 

calculations concerning neutron damage presented on this work were precisely made considering this 

wall. In order to perform those calculations coherently, a 300 ºC temperature was assumed and gas and 

heat production were also considered. The cross sections needed were generated by the NJOY99 

Nuclear Data Processing System, broadly used when it is necessary to convert Evaluated Nuclear Data 

Files (ENDF) format into useful information for practical applications, as fission and fusion nuclear 

reactor analysis. 

2.2.  Fuel Element, Fuel Pin, Matrix and Triso Particles 

The fuel element consists of a hexagonal arrangement of 384 fuel pins, each of them encapsulated 

with ODS steel, containing Triso particles enclosed by an inert matrix of SiC [14]. 

The Triso particles have a very interesting composition. They are constituted of five layers, the 

inner shell being TRU oxide and the other shells being, respectively, Zirconium carbide, Tungsten 

Carbide, Silicon Carbide and Tungsten carbide.  In order to achieve a high burn up and no fuel failure 

this special configuration is required. 

2.3.  Determination of Radiation Damage 

As previously mentioned, the DPA is a standard parameter considered for determination of 

radiation damage in materials. It considers the number of times in which an atom is displaced for a 
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given neutron flux fluence. Furthermore, it is possible to extract information about the material that is 

under effect of the flux, and from the own flux. 

The two variables that can determine the DPA rate are the number of displacements per unit 

volume, denoted by R divided by the atomic density of the material (HT-9 steel in this case). Equation 

(1) expresses the DPA rate (RDPA): 

 

                                                                                                                                                      (1) 

 

 

In the integral, the upper and the lower limits are denoted respectively by EM, the maximum 

energy of the incoming particle and Em, the minimum energy of the incoming particle. The (Ei) is 

the energy-dependent particle flux per unit energy, and D(Ei) is the energy-dependent displacement 

cross-section [9,15]. 

Through the MCNP-5 Nuclear Reactor Physics code, the neutron flux (Ei) was calculated as 

function of energy in the PSW and then combined with the DPA cross-section D(Ei) of the HT-9 

steel. Utilizing equation (1), the computation of the RDPA was possible. The achieved results are 

presented at the section below.  

3.  Results 

The total neutron energy deposition in the PSW is expressed in Figure 2. It is possible to notice that 

the RDPA (in fluence per year, FPY) presents the maximum value at the inner surface of the PSW, in 

the position of 0.5 cm, as expected. Due to attenuation effects, the neutron damage decreases when the 

RDPA is calculated for other position through the PSW.  

For all calculations it was considered that the neutron source strength for the GCFTR-2 was equal 

to 7.1x10
19

 (number per second) [13]. 

 

 
Figure 2 - Neutron energy deposition expressed in RDPA (FPY) in function of seven positions within 

the PSW. 

 

XXXVII Brazilian Meeting on Nuclear Physics IOP Publishing
Journal of Physics: Conference Series 630 (2015) 012014 doi:10.1088/1742-6596/630/1/012014

4



Besides the information concerning the total neutron energy deposition, Figure 2 also indicates the 

energy deposition according to the neutron energy group. Neutrons between 0.4 eV and 0.1 MeV are 

considered in the second epithermal energy group; between 0.1 MeV and 1 MeV in the first 

epithermal energy group and between 1 MeV and 20 MeV in the fast energy group [15]. Neutrons 

with energy up to 0.4 eV, in which thermal neutrons are included, presented no energy deposition 

within the material according to MCNP-5 simulations - indicating a non-interaction - and therefore are 

not represented in tables neither in graphs. The graph shows clearly that the major part of the neutron 

energy deposition was due to fast neutrons, followed by a small contribution of first epithermal group. 

Second epithermal group contribution was negligible. 

By evaluating the energy deposition in various points through the PSW it was possible to determine 

which points of the material would be more affected by the radiation. The maximum energy deposition 

due to fast neutrons occurred at the inner points of the wall, and presented a decreasing along the 

material thickness. On the other hand, the first epithermal group energy deposition was practically 

constant, not presenting any decrease regardless of the position within the PSW. 

More details may be appreciated in Tables 1 and 2, which presents, respectively, the neutron flux 

spectrum and the RDPA for three neutron energy groups (second epithermal, first epithermal and fast) in 

two points (the most inner and outer) evaluated within the PSW. 

 

Table 1- Flux spectrum for the PSW inner surface (0.5 cm) and for the outer PSW surface (3.5 cm) 

 

Energy Group 

 

 Energy 

Interval 

(MeV) 

Flux Spectrum 

PSW 0.5 cm surf. PSW 3.5 cm surf. 

n / cm² / s %f n / cm² / s %f 

2nd Epithermal 4E-7 to 0.1 2.17(1)E+14 30.4% 2.17(1)E+14 33.8% 

1st Epithermal 0.1 to 1 2.89(2)E+14 40.5% 2.82(2)E+14 43.9% 

Fast 1 to 20 2.08(1)E+14 29.1% 1.43(1)E+14 22.3% 

 Total 7.14(1)E+14 100% 6.43(1)E+14 100% 

 

Table 1 shows the neutron flux at the most inner and outer points considered within the PSW. This 

flux is also subdivided into three energy groups: second epithermal, first epithermal and fast. %f 

represents the percentage representatively correspondent of each component of the neutron flux - 

reminding that neutrons up to 0.4 eV were excluded from the analyses due to its non-interaction and, 

consequently, no energy deposition. 

 

Table 2- RDPA for the PSW inner surface (0.5 cm) and for the outer PSW surface (3.5 cm) 

 

Energy Group 

 

Energy 

Interval 

(MeV) 

RDPA 

PSW 0.5 cm surf. PSW 3.5 cm surf. 

FPY %f FPY %f 

2nd Epithermal 4E-7 to 0.1 0.221(2) 1.9% 0.253(2) 3.4% 

1st Epithermal 0.1 to 1 1.67(1) 14.8% 1.66(1) 22.4% 

Fast 1 to 20 9.38(5) 83.3% 5.49(3) 74.2% 

 Total 11.28(7) 100% 7.39(5) 100% 

 

Table 2 shows the RDPA in fluence per year (FPY) at the most inner and outer points considered 

within the PSW. The RDPA is also subdivided into three energy groups: second epithermal, first 

epithermal and fast. %f represents the percentage representatively correspondent of each component of 

the fluence. 

By subdividing the study into three energy groups it was possible to evaluate the behaviour of 

neutrons within the material. Analysing the Table 1, it was possible to notice that at the most outer 

position within the PSW the first and second epithermal fluxes were enhanced by 3.4% each, while the 

fast flux presented a 6.8% of decrease. The behaviour may be explained by the thermalization of fast 

neutrons, which interact with the nuclei of the material. 
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From table 2, as seen in Figure 2, it may be observed that the larger contribution to RDPA on the 

inner surface of the PSW (position of 0.5 cm) corresponds to the fast neutron flux (83.3% of RDPA). 

The first and second epithermal groups correspond to 16.7% of RDPA. The contribution of the second 

epithermal group, in this case, is found to be negligible.  

The results for the neutron damage presented in Figure 2 and Table 2 are in agreement with the 

literature [11]. One important point that should be highlighted is that the previous studies concerning 

the HT-9 steel were experimental [10, 11]. Through the simulations presented in this work it was 

possible to achieve similar results, indicating that not only the present study contributes to the research 

and understanding of the irradiation effects on the HT-9 steel but also indicates that the theoretical 

approach may be utilized to the study of other materials with great accuracy. 

4.  Conclusions 

The neutron damage determination was presented in this work with a special regard to the fast neutron 

damage problem applied to a hybrid reactor. Considering the calculated results, it was possible to 

confirm the predicted values of RDPA in the Plasma Source Wall (PSW). The good agreement with the 

literature [11] indicates an excellent computational simulation of the system. 

The work showed the total neutron energy deposition calculation in seven positions through the 

High-Cr martensitic HT-9 steel, demonstrating in which manner the energy loss may occur. Besides 

the total neutron energy deposition, the second epithermal, first epithermal and fast components were 

evaluated. As expected, according to MCNP-5 simulations, the thermal neutron energy deposition was 

not relevant to cause lattice damage in the steel and was not even considered in the analyses. As 

discussed in this work, the second epithermal group also presented negligible results. 

The subdivision of the neutron flux into three energy groups was essential to demonstrate the 

thermalization effects. The work showed that principally neutrons belonging to the energy interval up 

to 0.4 eV and neutrons from the second epithermal energy group may be motive of concern from the 

shielding point of view, since not only they are not absorbed by the PSW but also the neutrons from 

the fast spectrum are thermalized, enhancing the number of low energy neutrons leaving the plasma 

wall. 

In previous studies concerning the HT-9 steel, only mechanical tests were considered [10, 11]. In 

this context, computational simulations are needed to a better understanding of the experiment. The 

agreement between the previous results and the theoretical ones presented in this work indicates that 

not only the current study contributes to the research and understanding of the irradiation effects on 

the HT-9 steel but also indicates that the theoretical approach may be utilized to the study of other 

materials with great accuracy.  

Studies of the same nature as the one presented are essential to evaluate which materials may be 

employed in fusion facilities, the thickness of material needed, the lifetime of the structures, and also 

exactly what kind of radiation must be shield both for biological and for instrumentation protection. 

For future works, an improvement in the estimation of maximum RDPA may be done by comparing 

other nuclear neutron data libraries, upgrading the computational code input by adding the magnets 

and increasing the number of the particle histories. A biological shielding study is also foreseen. 
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